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Abstract. This review intends to summarize the vast
literature on K-Cl cotransport (COT) regulation from
a functional and genetic viewpoint. Special attention
has been given to the signaling pathways involved in
the transporter’s regulation found in several tissues
and cell types, and more specifically, in vascular
smooth muscle cells (VSMCs). The number of publi-
cations on K-Cl COT has been steadily increasing
since its discovery at the beginning of the 1980s, with
red blood cells (RBCs) from different species (human,
sheep, dog, rabbit, guinea pig, turkey, duck, frog, rat,
mouse, fish, and lamprey) being the most studied
model. Other tissues/cell types under study are brain,
kidney, epithelia, muscle/smooth muscle, tumor cells,
heart, liver, insect cells, endothelial cells, bone, plate-
lets, thymocytes and Leishmania donovani. One of the
salient properties of K-CI-COT is its activation by cell
swelling and its participation in the recovery of cell
volume, a process known as regulatory volume de-
crease (RVD). Activation by thiol modification with
N-ethylmaleimide (NEM) has spawned investigations
on the redox dependence of K-CI COT, and is used as
a positive control for the operation of the system in
many tissues and cells. The most accepted model of
K-CI COT regulation proposes protein kinases and
phosphatases linked in a chain of phosphorylation/
dephosphorylation events. More recent studies in-
clude regulatory pathways involving the phosphatidyl
inositol/protein kinase C (PKC)-mediated pathway
for regulation by lithium (Li) in low-K sheep red blood
cells (LK SRBCs), and the nitric oxide (NO)/cGMP/
protein kinase G (PKG) pathway as well as the
platelet-derived growth factor (PDGF)-mediated
mechanism in VSMCs. Studies on VSM transfected
cells containing the PKG catalytic domain demon-
strated the participation of this enzyme in K-CI COT
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regulation. Commonly used vasodilators activate
K-Cl COT in a dose-dependent manner through the
NO/cGMP/PKG pathway. Interaction between the
cotransporter and the cytoskeleton appears to depend
on the cellular origin and experimental conditions.
Pathophysiologically, K-Cl COT is altered in sickle
cell anemia and neuropathies, and it has also been
proposed to play a role in blood pressure control.
Four closely related human genes code for KCCs
(KCC1-4). Although considerable information is
accumulating on tissue distribution, function and
pathologies associated with the different isoforms,
little is known about the genetic regulation of the KCC
genes in terms of transcriptional and post-transcrip-
tional regulation. A few reports indicate that the NO/
c¢GMP/PKG signaling pathway regulates KCC1 and
KCC3 mRNA expression in VSMCs at the post-
transcriptional level. However, the detailed mecha-
nisms of post-transcriptional regulation of KCC genes
and of regulation of KCC2 and KCC4 mRNA
expression are unknown. The K-Cl COT field is ex-
pected to expand further over the next decades, as new
isoforms and/or regulatory pathways are discovered
and its implication in health and disease is revealed.
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Introduction
K-ClI cotransport (COT) is the electroneutral-coupled

movement of K and C1 ions'. Since the system was
first described as a swelling-[101, 199, 201] and thiol-

'For the sake of simplicity, ions are typed without the
corresponding valences.
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activated [220] Cl-dependent K transport in red
blood cells, numerous studies have confirmed its
existence in several tissues during its ‘“‘pre-genomic
era”, and have dealt with its kinetic, thermodynamic,
metabolic, biochemical and functional properties
both in health and discase. Earlier aspects of this
work have been addressed in several reviews [15, 45—
48, 54, 64, 68, 88, 98, 106, 108, 145, 146, 157, 173,
185, 204, 205, 214, 217, 258, 287, 320, 345, 355, 371].
The main conclusion from these reports is that K-Cl
COT is ubiquitously present, involved in cell volume
regulation, and, in turn, regulated by numerous
activators and inhibitors. For example, cell swelling,
thiol oxidation, cellular Mg-depletion, slight acidifi-
cation (by lowering pH to 7), protein kinase inhibi-
tors and free radicals are activators, whereas cell
shrinkage, most bivalent cations, marked acidificat-
ion (below pH 6.5), alkalinization (above pH 7.4),
polyamines and protein phosphatase inhibitors are
inhibitory. Furthermore, the system is highly acti-
vated in sickle cell anemia and plays an important
role in neuropathies, as described below in section
III. Following its cloning in 1996 [131, 293], several
genes encoding the K-Cl cotransporter, and their
multiple isoforms, have been found in most, if not
all, tissues. Indeed, a new wave of information re-
veals the cotransporter’s ubiquity and relevance in
ion and volume homeostasis, as well as in the
maintenance of life, as shown by animal models of
gene ablation [26, 37, 47, 48, 64, 68, 88, 98, 103, 145,
146, 174, 214, 250, 345, 371].

Figure 1 shows a summary of a series of 331
published articles/reviews on K-Cl cotransport as a
function of time, from 1980, year of its discovery,
until 2002. This summary includes most of the
studies/reviews dealing either exclusively or mainly
with K-Cl cotransport and also those where the
system is just mentioned for comparative purposes.
Not included in this series are articles where K-Cl
cotransport is called Cl-dependent K flux, which
was its original name. It is likely that this growth
will continue as more functional relevance under
physiological and pathophysiological conditions is
found.

Figure 2 shows the number of studies on K-CI
cotransport according to major cell types/tissues for
the series represented in Figure 1. Obviously, most of
the studies were done primarily in red blood cells,
including those in human [24, 29, 30, 47, 49, 52, 63,
75, 77, 100, 101, 112, 123-125, 130, 135, 139, 142,
158, 175-177, 187, 205, 216, 219, 248, 257, 260, 269—
271, 273, 275, 276, 281, 308, 311-313, 315, 334, 360],
sheep [4-6, 23, 27, 28, 84-87, 96-99, 114, 116, 1806,
196, 203, 205-209, 211-213, 215, 217, 218, 220, 221,
237, 283, 310, 369], dog [65-67, 118, 119, 198, 284—
290], rabbit [50, 167, 168, 337], horse [53, 68, 126, 127,
254, 335, 336], guinea pig [362], turkey [254], duck
[239], frog [9-11, 140, 141, 143], rat [95, 147, 159,
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Fig. 1. Publications on K-Cl COT as a function of time. Number
of publications from a sample of 331 published articles and reviews
for the period 1980 to 2002. This sample includes articles and re-
views dealing either exclusively or mainly with K-CI COT and also
those where the system is mentioned for comparative purposes.
Not included, are studies where K-Cl COT is referred to as Cl-
dependent K flux, as it was originally called.

K-CI COT Publications According to Cell Type
from 1980-2002

160

140

120

100

80

60

Number of Articles

40

20

0

RBC BR SCA KY EPTH M/SM TR HT ALL LV

Cell Type

Fig. 2. Number of studies on K-Cl COT according to major cell
types/tissues. Studies from the sample in Figure 1, covering the
period 1980-2002, were classified in cell types and tissues. RBC,
BR, SCA, KY, EPTH, M, HT, TR, LV represent red blood cells,
brain, sickle cell anemia, kidney, epithelia, muscle, heart, tumor,
and liver, respectively.

278], mouse [18, 19, 73, 74, 78, 297, 307, 330], fish [34,
35, 137, 172, 201, 345], and lamprey [194].

In the second place are studies on brain tissue [21,
42, 81, 82, 88, 111, 122, 138, 155, 156, 161, 162, 164,
165, 179, 180, 182, 184, 188, 229, 238, 255, 274, 277,
291-294, 303, 304, 316, 333, 339, 344, 347, 348, 354,
361, 363-365, 367, 375], followed by studies in
erythrocyte transport in sickle cell anemia [37, 38, 45,
48, 50, 51, 54-59, 72, 74, 104, 109, 110, 128, 129, 154,
157, 173, 185, 210, 223, 226, 227, 244, 253, 256, 258,
268, 272, 282, 300, 305, 324, 341, 351, 352], and with
decreasing frequency those in kidney [14, 15, 33, 39,
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44, 61, 62, 102-107, 121, 132, 134, 136, 144, 153, 222,
230, 240, 242, 301, 325, 331, 349, 355, 357, 358],
epithelia [20, 70, 71, 79, 94, 120, 146, 189, 190, 228,
234, 252, 317-319, 329, 342, 346, 353, 370], muscle/
smooth muscle [2, 7, 8, 17, 64, 89, 91-93, 115, 280,
314, 356, 373], tumor cells [12, 83, 160, 171, 191-193,
197, 225, 247, 295], heart [13, 16, 150, 157, 163, 195,
299, 343, 368], studies where K-CI cotransport is re-
ported to be present in most (all) cells/tissues [131,
145, 214, 249, 251, 320, 371], and in liver [25, 245].
Not shown are studies in insect cells [40, 259], endo-
thelial cells [296], bone [148], platelets [80], thymocytes
[113], and Leishmania donovani [31].

Figures 1 and 2 indicate that, due to its role in
cellular homeostasis, that is, constancy of cellular
volume and chemical composition of intracellular
compartments, the K-Cl cotransporter may be in-
volved in multiple processes essential for cell survival.
Given the large scope of activities in the field, this
review has been divided in three major areas. The first
one deals with the regulation of K-Cl cotransport in
enucleated and nucleated erythrocytes and in other
cell types and tissues. It also includes work done in
disecase states and on the relationship between the
transporter and the cytoskeleton. The second area
describes some of the information available on the
regulation of K-Cl cotransport in vascular smooth
muscle cells. This includes general properties, regu-
lation by signaling cascades, as summarized in a
working model, and the newly uncovered potential
role of the transporter in vasodilation. The final and
third major area summarizes information available
on the regulation of the transporter at the gene level
and concentrates specifically in the human KCC
genes and in the genomic organization and expression
of the presently known isoforms: KCCI1, KCC2,
KCC3 and KCC4. This section not only summarizes
the available information but also provides predic-
tions based on in silico analysis for some of the dif-
ferent sub-isoforms.

Outline of Review:
Cellular Regulation of K-Cl Cotransport

ERYTHROCYTES FROM SEVERAL SPECIES

NONERYTHROCYTTC CELL TYPES

REGULATION OF K-Cl COTRANSPORT IN DDISEASE
STATES

RELATIONSHIP BETWEEN K-Cl COTRANSPORT AND THE
CYTOSKELETON

K-ClI Cotransport in Vascular Smooth Muscle Cells

GENERAL PROPERTIES

REGULATION BY SIGNALING CASCADES

MopeL oF K-Cl COTRANSPORT REGULATION BY
SIGNAL TRANSDUCTION

K-Cl COTRANSPORT AND VASODILATION

Regulation at the Gene Level and Molecular Biology of
Human KCC Genes

GENERAL ASPECTS
GENOMIC ORGANIZATION AND EXPRESSION

KCCl1
KCC2
KCC3
KCc4

Cellular Regulation of K-Cl Cotransport

Lipid-protein interactions are essential for cellular
function and occur at different levels of cellular
organization [3]. The advent of molecular biology in
the last decades has accelerated both the quest for
and knowledge of the mechanisms involved in cellu-
lar and inter-cellular communication. At the center of
interest are the mechanisms of signal transduction [3].
These are multi-step processes involving hormones or
growth factors, cellular membrane components
(proteins, lipids) working as transducers, and a cas-
cade of enzymes, cofactors and molecules interacting
amongst each other and with cellular structures
(cytoskeleton, organelles, macromolecules, polymers)
(see [149] for further information). Proteins have been
known as the main components of signaling path-
ways. However, one of the emerging areas of inten-
sive research is concerned with the role of lipids as
signals, intermediaries or products of a signaling
cascade. An example is the newly demonstrated
existence of lipid rafts or lipid microenvironments on
the cell surface that incorporate proteins involved in
signal transduction cascades. A salient characteristic
of lipid rafts is that the inclusion or exclusion of
proteins is dependent on the signaling pathway and
that in response to intra- or extra-cellular stimuli,
they can change their composition and size [332].

ERYTHROCYTES FROM SEVERAL SPECIES

Ton transporters are recognized components of
intracellular signaling pathways [149] and those that
are activated by cell swelling have been proposed to
operate as receptors, messengers and effectors [320].
For example, the K-Cl cotransporter is activated by
cell swelling and in turn regulates cell volume through
a process known as regulatory volume decrease
(RVD) (Fig. 3 and see Table 1) [106, 204, 217]. This
phenomenon has been demonstrated in numerous
studies done in normal red blood cells (RBCs). Some
of the findings on K-Cl COT regulation in RBCs are
summarized below and have been separated accord-
ing to species, since inter-species differences have
been observed. Similarities or differences in K-CI
COT response to manipulations or regulation of the
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Fig. 3. Representative scheme of regulatory volume decrease
(RVD). In step 1, suspension of cells in hypotonic medium causes
water to move in and, consequently, cell swelling (step 2). This
process activates volume-sensitive transporters, in this example K-
Cl COT, which extrude K and Cl with obligatory outward move-
ment of water (step 3). Upon completion of this process, the cells
recover their original volume (step 4). This last step may occur at
different rates depending on the cell type or tissue.

system by effectors will be indicated whenever the
information is available (see also Table 1).

Human RBCs possess a swelling- [30, 101, 124,
187, 269, 276, 311], NEM-activated [29, 124, 216,
219], and DIOA-sensitive K-Cl COT efflux [124]. The
activation by cell swelling is strongly inhibited by
cytochalasin B, suggesting participation of the cyto-
skeleton in the regulatory response of K-Cl COT
[124].

Several regulators of K-Cl COT activity have
been proposed for human RBCs. In RBC ghosts,
soluble polycations such as spermine and methyl
glyoxal, and cationic amphiphiles (such as sphingo-
sine and tetracaine) inhibit K-CI COT independently
of cell volume. These compounds are thought to
regulate K-CI COT in ghosts through negative char-
ges (phosphatidylserine or phosphatidylinositides)
located at the inner membrane surface, thus exclud-
ing the possibility of cellular metabolic regulation
[311]. However, evidence for metabolic regulation in
sheep and human RBCs was previously reported
[202, 219] and regulation of K-CI COT through a
metabolic cascade was proposed by Jennings and Al-
Rohil for rabbit red cells [169] and by cAMP in RBCs
from other species (see references in [217]). Further
evidence for regulation of K-Cl COT through a cas-
cade of kinases and phosphatases has been reported
in cells from different tissues. In particular, serine/
threonine and tyrosine kinases/phosphatases have
been proposed in the regulatory pathway/s. For
example, in human RBCs, protein phosphatase
inhibitors inhibit K-C1 COT [178, 279]. Furthermore,
K-ClI COT activity and membrane-bound protein
phosphatase type 1 and 2A (PP1 and PP2A, respec-
tively) activities are positively correlated, suggesting
participation of these enzymes in K-Cl COT modu-

lation by cell swelling, NEM, and Mg;-depletion [29,
30]. There is also evidence supporting regulation of
K-CI COT by a volume-sensitive kinase [187], first
proposed by Jennings and his group to inhibit K-Cl
COT [169, 170] (see Fig. 4). Thus, the evidence
available indicates that signal transduction pathways
regulate K-Cl COT and that swelling activation may
also occur without involvement of cellular metabo-
lism.

In dog RBCs, Mg; and Li; regulate the response
of K-Cl COT to swelling [290]. As in human and
rabbit RBCs, activation and deactivation of volume-
sensitive K-CI COT appears to be regulated by
phosphorylation/dephosphorylation events [288].
The response of K-ClI COT to volume changes, to-
gether with that of Na/H exchange, led to the pro-
posal that osmotic changes modulate enzyme activity,
a phenomenon more generally known as “‘molecular
crowding” [287, 289]. The high-potassium (HK) dog
RBC is an interesting model for studying the role of
K-CI COT in cell volume regulation [118]. In addition
to a high K content, these cells also possess high
glutathione (GSH), and when separated by their
density, in contrast to human and sheep RBCs [214,
217], the oldest cells are lightest and the younger cells
are heavier. In addition, the K-Cl COT activity is
higher in younger and lower in older cells, as it is in
human and sheep RBCs [214, 217]. Protection of K-
C1 COT activity and cell volume regulation from thiol
modification, requires an intact redox system, rather
than high GSH alone [119].

Low-K (LK) sheep RBCs (SRBCs) constitute
one of the first models to study K-Cl COT, since
mature cells possess an active system, in contrast to
most other cell types where the system is latent and
requires activation [204, 214, 217]. A significant
amount of information about its properties and
regulation has been obtained in sheep RBCs [214,
217]. These cells and those of other artiodactyla,
such as goat, and cattle, as well as those of some
members of the order carnivora, such as cats and
dogs (see above) are characterized by a cation
dimorphism, i.e., the HK or LK steady state.
Studies on membrane thiol groups of LK and HK
sheep RBCs revealed a similar distribution of these
groups in the two types of cells and gave support to
the hypothesis that their difference in K-ClI COT
activity is due to cytoplasmic control of the trans-
porter [202, 209, 214, 217], as it was described above
for human, rabbit and dog RBCs. The suggestion of
K-Cl COT control by a cytoplasmic cascade in
sheep RBCs has been further supported by the
finding that staurosporine, a protein kinase inhibi-
tor, activates the transporter in these cells [27, 116].
Activation of K-Cl COT by staurosporine requires
that a putative kinase inhibits the phosphatase that
regulates the transporter [27, 116]. Oxidants have
been shown to stimulate K-Cl COT [204, 214, 217].
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Table 1. Summary of activators and inhibitors, regulation pathways, regulators, function and pathology of K-Cl COT
Cell/Tissue Activators Inhibitors Regulators/Pathways Function Pathology ~ References'
Enucleated Erythrocytes:
Human Swelling Cytoch. B> PKs/PPs RVD SCA 5,29,30,37,38,
NEM DIOA VK Cell Dehyd. 54,57,59,72,77,
Mg;-depletion Polycations PP1 100,123,177,
Diamide Cat. Amphiph. PP-2A 185,216
Acidification Okadaic acid Hb C 217,226,243,
Urea Calyculin A HB OARAB 256,268,279
Src, Syk 311
Dog swelling Mg; PKs/PPs RVD 118,119,214
Li; 217,284-290
Molecular crowding
Sheep Swelling Calyculin A PKs/PPs SCA model 1,4,6,7,27,28,
Staurosporine Genistein PI Pathway 113,115,201,
Low pH KT5823 PKC 203-209,211-
Oxidants: (SH-R, Li;, DIDS MEK 215,217
H,0,, NO5, NO) PD98059
Vasodilators: (HYZ, H™;
SNP,ISSB,PE,NaNO,) SH-R
Rabbit Swelling PKs/PPs 167-170
NEM PPI 214,217,337
VK
Rat Swelling Okadaic acid PKs/PPs RVD 278
High Temp. Calyculin A Cytoskeleton
VK
Mouse Diamide Src Ks: Fgr, Hck RVD SCA model 5,18,73,88,
Swelling Prot. 4.2 297,306,340
Hb C, Hb S, Hb vy
Guinea Pig High Temp. 362
Equine Oxygenation Deoxygenation 53,127
CO, NOz
Nucleated Erythrocytes:
Duck, frog, Swelling Thiols PKs/PPs RVD 11,34,68,137,199
Fish High O, Low Ta. 201,239
HO™ NaF
Vanadate
Non-erythrocytes:
HEK-293, Swelling CJ SPAK RVD Neuropath., 81,83,88,106
Brain, NEM Furos. (> 1 mM) OSRI C]; regulation M.I. 131,145,155,
Heart, Bumet. (> 100 uM) K absorption/ 156,163,189,
Epithelia, homeostasis 190,192,195,
Tumor Cells Apoptosis 197,217,222,
274,277,291,
295,299,318,
343,355,368

"References correspond to cell type or tissue but not to individual activators, inhibitors, regulators, function and/or associated pathology.
2Abbreviations used: (in order of appearance in the Table): Cytoch B, Cytochalasin B; Pks/PPs, protein kinases/protein phosphatases; RVD,
regulatory volume decrease; SCA, sickle cell anemia; NEM, N-ethylmaleimide; DIOA, [(dihydroindenyl) oxy] alkanoic acid; VK, volume-
sensitive kinase; Cell Dehyd., cell dehydration; PP1, protein phosphatase 1; Cat. Amphiph., cationic amphiphiles; PP-2A, protein
phosphatase 2A; Hb, hemoglobin; Mg;, internal Mg; Li;, internal Li; PI Pathway, phosphatidyl inositol pathway; PKC, protein kinase C;
MEK, mitogen-activated protein kinase kinase; H>O,, hydrogen peroxide; NO5, nitrite; NO, nitric oxide; HYZ, hydralazine; SH-R, thiol
reagents; SNP, sodium nitroprusside; ISSB, isosorbide mononitrate; PE, pentaerythritol; HO; Hydroxyl radical; Temp., temperature; Src
Ks, Src kinases; Prot. 4.2, protein 4.2; CO, carbon monoxide; Furos., furosemide; Bumet., bumetanide; SPAK, Ste-20-related proline-
alanine-rich kinase; OSR1, oxidative stress response 1 kinase; Neuropath., neuropathies; M.1., myocardial ischemica.

Amongst these compounds, H,O, appears to stim-
ulate the phosphatase/s involved in K-Cl COT
activation [28]. At least two phosphorylation sites
on the transporter or regulator have been proposed,
based on the additive effect of NEM and H,O, [28]

and MgATP depletion studies [283]. In fact, evi-
dence of regulation by the PP1 and PP2A phos-
phatases exists for human red cells [29, 30].
However, it is also possible that the two compounds
act through different signaling pathways.
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Simplest Model of K-C1 COT Regulation
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Fig. 4. Simplest model of K-CI COT regulation. This scheme
summarizes the most commonly proposed mechanism for K-ClI
COT regulation by thiol reagents such as N-ethyl maleimide
(NEM) and hydroxylamine (NH,OH) and for drugs that are ser-
ine/threonine enzyme inhibitors such as staurosporine (SP). Geni-
stein is a tyrosine kinase inhibitor, calyculin and okadaic acid are
serine/threonine phosphatase inhibitors of protein phosphatase
1 and 2A (PP1 and PP2A), respectively.

For instance, the effect of the oxidant nitrite
(NO3) on K-Cl COT was first found in LK SRBCs
[6]. NO;3 is a stable metabolic end product of the
short-lived highly reactive free radical nitric oxide
(NO), an oxidant, modulator of ion channels, and
potent vasodilator. In some systems, the response to
NO;3 is identical to that of NO. We hypothesized that
NO; activates K-Cl COT. The effect of various
concentrations (107% to 107" M) of NaNO, was
studied on K efflux in hypotonic Cl and NO; media,
Cl-dependent K efflux, glutathione (GSH), and met
hemoglobin (MetHb) formation. Increasing concen-
trations of NaNO, stimulated K efflux and K-Cl
COT. Stimulation of K efflux was dependent upon
external Cl, a characteristic of K-Cl COT. A lag
phase consistent with kinase/phosphatase activation
of K-ClI COT was also detected. Exposure of LK
SRBCs to NaNO, decreased GSH, an effect charac-
teristic of a thiol-oxidizing agent and confirmed by
concomitant MetHb formation. Activation of K-Cl
COT was positively correlated with MetHb forma-
tion. N-ethylmaleimide (NEM) was used to assess the
mechanism of NO5 action. These early findings sug-
gested that NEM and NO5 utilize at least one com-
mon pathway for K-Cl COT activation, and that
K-CI COT might be involved in cardiovascular dis-
ease [6]. In separate studies, commonly used vasodi-
lators such as hydralazine (HYZ), sodium
nitroprusside (SNP), isosorbide mononitrate (ISSB)
and pentaerythritol activated K-CI COT in a con-
centration-dependent manner in LK SRBCs incu-
bated in media of different osmolalities (240-450
mOsM) [1, 6, 7, 372] and in the presence and absence
of calyculin or genistein, inhibitors of the cotrans-
porter, and of KT5823, a selective inhibitor of PKG

[7]. All vasodilators activated K-Cl COT in these
cells, and calyculin and genistein inhibited this acti-
vation, whereas KT5823 abolished the sodium
nitroprusside-stimulated ~ K-CI-COT,  suggesting
involvement of the cGMP pathway in K-Cl COT
activation [7]. Furthermore, the data indicate that cell
swelling alters activation of K-Cl COT by the vaso-
dilators tested and that the mechanism of activation
is drug-dependent and may involve the cellular
metabolism [372].

On the other hand, lithium and protein kinase C
(PKC) modulators regulate swelling-activated K-ClI
COT in sheep red blood cells (SRBCs), with
involvement of the phosphatidylinositol pathway (see
above, and [114]. Lithium increased the production of
diacylglycerol in a bimodal fashion, without altering
the phosphatidylinositol concentration, and revealing
the presence of a complete PI cycle in LK SRBCs. In
addition, phorbol ester treatment and inhibition of
mitogen-activated protein kinase (ERK1/2) kinase by
PD98059 and of serine/threonine phosphatases by
calyculin inhibit, in a time-dependent fashion, swell-
ing-activated K-Cl COT [114] (Fig. 5). These results
suggest that modulation of the cellular phospholipid
metabolism affects the response of K-Cl COT to
changes in cellular volume [114] (see Fig. 6). As in
dog RBCs [290], internal but not external Li inhibits
K-Cl COT activity in sheep RBCs. This inhibitory
effect could result from Li acting on an allosteric site
on the transporter and /or its regulators [114]. In
addition, Li appears to alter the response of K-Cl
COT to pH and volume changes by modulation of
the cellular phospholipid metabolism and a PKC-
dependent regulatory pathway [114].

Rabbit RBCs are also a good model to study
K-CI COT regulation. Studies in these cells support
earlier evidence of metabolic regulation [202, 214,
217], and proposed participation of a regulatory
kinase/phosphatase cascade [169, 170]. Furthermore,
these studies provided the first evidence that PPI is
involved in K-Cl COT regulation [337].

In mouse RBCs, K-CI COT is involved in RVD
[18] and is activated by diamide [5]. Another impor-
tant finding in terms of K-Cl COT regulation is the
fact that RBCs of knockout mice for the Src family
kinases, Fgr and Hck, had significantly higher
transport activity in the double mutant erythrocytes
with respect to the wild type [76]. This family of
kinases plays a central role in the regulation of
hematopoietic cell functions. Thus, Fgr and Hck
kinases appear to inhibit the phosphatase/s that
activate/s the transporter [76]. Regulation of K-Cl
COT is altered in protein 4.2—null mice [297]. This
protein is a major component of the RBC membrane
skeleton and its deletion significantly increases
transport activity [297]. The mouse K-CI cotrans-
porter KCC1 has been recently cloned and expression
in oocytes [340] indicates that the system displays the
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Fig. 5. Proposed mechanism of K-Cl COT regulation by internal
lithium (Li;). Li increases diacylglycerol (DAG), substrate of pro-
tein kinase C (PKC), which is involved in the transmission of the
signal to one of several cascades of protein serine/threonine kinases
that utilize the sequential phosphorylation of kinases to transmit
and amplify the signal. These kinase cascades are collectively
known as mitogen-activated protein kinase (MAPK) signaling
cascades. One of the best studied of these kinase cascades is the
ERK (p44/p42 MAPK) signaling cascade. The intermediates are
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Fig. 6. Effect of PD98059 and calyculin on K loss in low K sheep
red blood cells (LK SRBCs). RBCs were incubated in the presence
and absence of the MEK kinase inhibitor, PD98059 (50 pm) or
calyculin (20 nm) in Cl and NO; medium [114] and the fractional K
loss calculated as 1n (1-K). Statistical significance was determined
with respect to the control.

known characteristics of K-Cl COT described in
other cells [214, 217].

Mild warming of guinea pig RBCs (from 37°C to
41°C) activates K-Cl COT [362]. Although some of

MAPK kinase kinase (MEKK1), MAPK kinases (Meks), Mekla/
2, and erks. Downstream targets of erk include p90rsk (p90 ribo-
somal S6 protein kinase), and the Elk-1 and Stat3 transcription
factors (not shown in the scheme). This cascade is proposed to
activate serine/threonine phosphatases (PP1 and/or PP2-A). Al-
though the phorbol ester TPA acts as a substrate of PKC, stimu-
lation of K-Cl COT is blocked by an unknown mechanism (not
indicated in this scheme). PD98059 and calyculin are inhibitors of
the MAPK pathway and of PP1, respectively.

the properties of the transporter are similar to those
described in RBCs from other species [214, 217], the
kinetics of activation of the system by mild warming
led to conclude that regulation of guinea pig RBC K-
CI COT is altered to compensate for ionic imbalances
caused by the increase in temperature [362]

Equine RBCs possess a K-Cl COT with charac-
teristics similar to those found in sheep and normal
human RBCs [53]. As in other cells [214, 217], oxy-
genation of equine RBCs activates, and deoxygen-
ation deactivates K-CI COT [53]. Other oxidants such
as carbon monoxide and nitrite also activate K-ClI
COT in these cells. The degree of activation by these
compounds with respect to oxygenated RBCs is
commensurate with MetHb formation and GSH
depletion [128], as described previously for sheep
RBCs [6].

Some nucleated cells such as duck, frog and fish
RBCs possess a swelling activated K-Cl COT [68,
199, 201]. In duck RBCs, the response of K-Cl COT
to cell swelling [199, 239], is similar to that observed
in human, dog, sheep and several other species.
Furthermore, cell volume and internal Cl (Cl))
modulate the activity of the transporter through
involvement of kinases and phosphatases and phos-
phorylation/dephosphorylation events [239], similarly
to what has been reported for other species. In many
enucleated and nucleated RBCs, K-Cl COT is sus-
ceptible to inhibition by physical parameters such as
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osmotic pressure and temperature and by ions or
chemical compounds [214, 217]. NaF inhibits K-CI
COT in frog and sheep RBCs [11, 214] and vanadate,
in frog and rabbit RBCs [11, 169], and this inhibition
may also involve protein phosphatases [11]. K-CI
COT in trout RBCs is activated by incubation of cells
under high O, tension, an effect also reported for
equine RBCs ([68] and references therein, [34]). A
putative transduction pathway also involves a meta-
bolic cascade to account for activation by oxygena-
tion [68]. However, an alternative mechanism by
which O, may modulate K-Cl COT activity in trout is
by release of hydroxyl radical from O, in the vicinity
of the cell membrane [34].

NonN-erYTHROCYTIC CELL TYPES

In the late 1980s, it was clear that many cells,
including renal cells, had the capability to downre-
gulate their volume after swelling [106]. However, the
signal transduction pathways were largely unknown
[106]. In polarized cells such as renal cells, the K-CI
cotransporter is expressed in the basolateral mem-
brane and plays an important role in transcellular ion
movement [355]. Cultured human embryonic kidney
(HEK)-293 cells are used as a model to study kidney
cells in vitro. Some properties of K-Cl COT in HEK-
293 cells over-expressing the K-Cl cotransporter
1 (KCCl1) are similar to those observed in red cells
[132]. However, some differences have been reported
in terms of their response to staurosporine, hydrox-
ylamine, NEM, cell swelling and pH changes [222].
Furthermore, the signal transduction pathways in-
volved in K-CI COT regulation in these cells have not
been reported yet.

Studies in cultured astrocytes and rat midbrain
neurons, and in pyramidal neurons from rat neo-
cortical slices have revealed the presence of K-Cl
COT [81, 156, 164, 274, 291]. In astrocytes, K-Cl
COT participates in RVD [274, 291], whereas in
cultured rat midbrain neurons, the transporter plays
a dual role in the control of CI;. Under normal
external K (K,) concentrations, the cotransporter is
outwardly directed. At high K, as observed during
neuronal hyperactivity, K-Cl COT is inwardly di-
rected and accumulates Cl. This increase in Cl; fur-
ther increases neuronal excitability [164]. Similar
results were found in mature rat neocortical pyra-
midal neurons but not in neurons from neonatal rats,
further stressing the important role of K-Cl COT in
the homeostasis of cellular Cl and its regulation
during development [81]. The K-Cl cotransporter
also interacts with the stress-related kinases Ste-20-
related proline-alanine-rich kinase (SPAK) and oxi-
dative stress response 1 (OSR1) both in vivo and
in vitro, suggesting that this type of interaction may
be involved in cellular stress signaling [298]. It is ex-
pected that in the near future more detailed studies on

the signal transduction pathways that regulate K-Cl
COT in brain cells will be conducted.

Piwnica-Worms et al. provided the first evidence
for the presence of K-Cl COT in heart by measuring
3C1 fluxes in a polystrand preparation of cultured
chick heart cells [299]. Since then, several reports
have confirmed the existence of K-CI COT in various
heart preparations [157, 195, 343, 368]. In all prepa-
rations, the system is recognized as a volume regu-
lator. Furthermore, during myocardial ischemia, the
transporter is activated in response to myocyte vol-
ume regulation, suggesting an important role for the
system under this condition [368].

Besides RBCs, epithelial cells were one of the first
systems where presence of K-Cl COT was reported
(see references in [217]). In epithelia, the properties of
K-CI COT are similar to those described for other cell
types and the major function of the system appears to
be regulation of cell volume [146, 190, 318]. In rat
colonic epithelium, K-Cl COT has been proposed to
mediate transepithelial K absorption and to be in-
volved in K homeostasis by “sensing” the levels of
dietary K [318].

The role of K-Cl COT in volume regulation has
also been investigated in tumor cells [83, 191, 193,
197, 277, 295]. The cells studied are derived from
Ehrlich ascites tumor [197], human and mouse with
erythroleukemia [83, 295], HepG2 human hepato-
blastoma [191, 193] and N1E mouse neuroblastoma
[277]. Involvement of K-Cl COT in RVD appears to
be independent of the cellular origin and conditions
of study, whereas its involvement in apoptosis is not
[191, 193, 277].

Further studies on the presence, function and
regulation of K-Cl COT in different tissues has been
summarized elsewhere [68, 96, 145, 214, 217, 320,
371].

REeGuLATION OF K-Cl COTRANSPORT IN DISEASE STATES

Due to its ubiquitous nature and prominent role in
cellular homeostasis, evidence of abnormal structure,
function and/or regulation of the transporter is ex-
pected to be found under pathological conditions as
research progresses in the field. One of the first and
most studied diseases where this transporter has been
found operationally abnormal is sickle cell anemia. In
RBCs homozygous for hemoglobin S and C and
heterozygous SC, K-Cl COT is elevated with respect
to normal hemoglobin AA cells. The higher activity
was observed under several experimental conditions
(swelling, NEM treatment and acidification) [59]. The
increased activity of the transporter contributes to
increased mean corpuscular hemoglobin and sub-
sequent cell dehydration [54, 57]. Separation of SS
cells in density-defined fractions shows that its
activity disappears after reticulocyte maturation [57].
However, mathematical modeling and further
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experimentation uncovered a novel mechanism of cell
dehydration, where K-CI COT plays an important
role. This created the fast-track hypothesis of irre-
versible sickle cells directly formed from reticulocytes
[37, 38, 227]. Studies in transgenic mouse red cells
indicate that Hb C and Hb S+ gamma affect both
quantitatively and qualitatively K-Cl COT by alter-
ing its activity and/or regulation [306]. In RBCs from
knockout mice for the Src family kinases, the Fgr and
Hck kinases appear to inhibit the phosphatase/s that
activate/s the K-Cl cotransporter [76]. Recent studies
in deoxygenated sickle RBCs indicate that Syk (a Syk
family protein kinase) and Src regulate K-Cl COT
through opposing yet interconnected effects [243].
Furthermore, an increasing number of reports indi-
cate that abnormalities in K-CI COT can cause from
mild to severe neuropathies in human and murine
species [88]. A more detailed description of these
abnormalities will be given below under Genomic
Regulation.

RELATIONSHIP BETWEEN K-Cl COTRANSPORT AND THE
CYTOSKELETON

The K-Cl Cotransporter regulates cell volume
through stimulation by cell swelling, a process known
as RVD. In spite of the abundant literature on K-Cl
COT, only few studies have dealt with the interaction
between the transporter and the cellular cytoskeleton.
Some of these studies suggest either direct or indirect
interactions, whereas a few others find independent
responses upon modulation of these cellular struc-
tures. For instance, interaction between the cotrans-
porter and the cytoskeleton occurs when cell volume
sensors, by detecting deformation or stretching of the
cellular membrane and its cytoskeleton upon swell-
ing, activate K-Cl COT and induce RVD [320]. Hu-
man RBCs containing HbC and HBOARAB have an
abnormally elevated K-Cl COT activity, which may
be brought about by interaction of these hemoglobins
with the red cell membrane, its cytoskeleton or both
[257]. Furthermore, interaction between the cotrans-
porter and the cytoskeleton is supported by inhibition
of swelling-activated DIOA-sensitive K-Cl COT by
cytochalasin B in human RBCs [124], and by the
finding that 10-min thermal pre-treatment of rat
erythrocytes at 49 °C causes full-scale activation of
K-CI cotransport and blocks its regulation by swell-
ing, a temperature at which spectrin denaturation
also occurs [278]. Furthermore, the cytoskeleton
network plays a key role in volume-dependent K-Cl
cotransport activation in human and rat erythrocytes,
suggesting involvement of protein phosphorylation-
dephosphorylation events, as determined with the
phosphoprotein inhibitors okadaic acid and calyculin
[279]. Independence between modulation of the co-
transporter and the cytoskeleton appears to exist in

hereditary spherocytosis [77] and in human red cells
with a cytoskeletal deficiency [5].

Table 1 summarizes some activators, inhibitors
and regulators of K-Cl cotransport as well as the
functions and associated pathologies in the different
cell types/tissues described in this section. From the
data in Table 1, it is apparent that some cells/tissues
(human and sheep red cells) have received more
attention than others (non-erythrocytes). However,
lately, there has been an exponential growth in the
area of brain research and K-Cl cotransport regula-
tion as well as on the role K-Cl cotransport abnor-
malities play in the manifestation of disease (see
below).

KCI Cotransport in Vascular Smooth Muscle Cells
GENERAL PROPERTIES

In many cells, K-CI COT is activated by cell swelling,
thiol reagents, such as NEM and diamide, and by
internal Mg depletion, whereas it is inhibited by cell
shrinkage, okadaic acid, calyculin and genistein ([214,
217] and references therein). The system has been
extensively characterized in RBCs from a kinetic and
thermodynamic standpoint. In contrast, little is
known about its properties in VSMCs. In the A10 cell
line, K-Cl COT is activated by cell swelling, it is in-
volved in volume regulation and is inhibited by
DIOA [314]. However, DIOA has been reported to
exert diverse side-effects in VSMCs, including cyto-
toxicity [17], and thus may not be used as a criterion
for K-Cl cotransport identification, at least in
nucleated cells. In addition, inhibitors such as furo-
semide, okadaic acid and calyculin A are unable to
inhibit the swelling-activated K-Cl COT in these cells
[17].

Amongst the thiol reagents, NEM has been
extensively used as an activator of K-Cl COT [197,
217, 220]. Thus, NEM was used in rat aortic VSMCs
to test for presence of a functional K-Cl COT, and as
a positive control for the response to the vasodilator
HYZ [7]. Incubation of primary cultures of VSMCs
with 0.5 mm NEM or 1.75 mm HYZ activated a Cl-
dependent Rb influx, indicating that these cells pos-
sess K-Cl COT. The activation by NEM was 13.2-
fold and that by HYZ 10.4-fold with respect to the
control [7]. Characterization of K-Cl COT in VSMCs
is in progress as well as identification of the different
regulatory pathways (see below).

REGULATION BY SIGNALING CASCADES

Several transport pathways have been proposed as
transducers of hormone actions in VSMCs and vas-
cular endothelial cells [43, 261-267]. Furthermore, as
described above, ion transporters and cyclic nucleo-
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tides are recognized components of intracellular sig-
naling pathways ([149] and references therein). In
VSMCs, nitrovasodilators relax contracted VSM
both in vitro and in vivo. These drugs release NO,
which at submicromolar concentrations activates the
soluble guanylyl cyclase (GCs) that catalyzes the
conversion of GTP into cGMP. This nucleotide
activates protein kinase G (PKG), which is involved
in the modulation of ion transport pathways [149,
231, 232] and references therein, [359] (see Figure 7).
However, at micromolar concentrations of NO or
higher, other NO-signaling mechanisms independent
of elevations in cGMP have been described [133, 166,
181, 231, 232, 321]. Furthermore, cGMP can regulate
cellular function by activation of PKG or by acting
directly on non-selective ion channels such as in the
vertebrate rod photoreceptor cell as well as renal and
olfactory epithelial channels [231, 232] and the
Ca-dependent K channels in VSMCs [36].

Of particular interest in the cGMP-dependent
NO-signaling pathway is the role of PKG in the
regulation of ion transport. This kinase, which com-
prises a group of closely related enzymes, is a serine/
threonine protein kinase and belongs to the protein
kinase superfamily. Numerous and varied substrates
have been reported for this protein [231, 232], which
possesses two catalytic site inhibitors, H-8 and
KT5823, with reported K; values for the purified en-
zyme of 0.48 pM and 0.23 uM, respectively. These
inhibitors also inhibit cAMP-dependent protein
kinase but with K; one order of magnitude higher
[231, 232]. Both, repetitive passage of cultured rat
aortic SMCs and continuous exposure of cultured
bovine aortic SMCs to NO donors, are associated
with loss of expression of PKG [233]. Presence or
absence of PKG determines the phenotype of
VSMCs. Thus, PKG-containing cells possess a con-
tractile-like morphology, whereas PK G-deficient cells
become dedifferentiated and “‘synthetic” [32].

In the last decades, a wealth of information has
been accumulated on the complex and precise
mechanisms that control ion channels and, to a lesser
extent, of those that control ion transporters
(exchangers and cotransporters). Of particular inter-
est here is the regulation of K-Cl COT, which is
proving to be more complex than expected, since
several signaling cascades appear to be involved. The
NO-dependent, cGMP-mediated signaling pathway
in VSMCs has been extensively investigated [231,
232]. However, the transducers at the membrane level
remain largely unknown. Cultured VSMCs obtained
from rat aorta possess a K-Cl COT activity that is
stimulated by NEM and HYZ [7]. Activation of
VSMC K-CI COT by HYZ is inhibited by calyculin
and genistein, resembling the behavior of LK SRBCs
[7]. Furthermore, activation of VSM K-Cl COT by
the vasodilators HYZ and SNP decreases, in a dose-
dependent manner, VSM tension in isolated porcine
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Fig. 7. Proposed scheme for the regulation of K-Cl COT by
vasodilators in vascular smooth muscle cells (VSMCs). Vasodila-
tors (VDs) such as sodium nitroprusside (SNP) release nitric oxide
(NO) and activate the soluble guanylyl cyclase (sGC). This enzyme
converts GTP into cGMP and the nucleotide activates protein ki-
nase G (PKG), which by an unknown mechanism activates protein
phosphatase 1 (PP1) and activates K-Cl COT.

coronary rings. Relaxation of pre-contracted arteries
occurred endothelium-independently when only K-Cl
COT was operating and other pathways for K/Rb
transport, including the Ca-activated K channel, were
inhibited [7]. Newer vasodilators known as NONO-
ates, which are NO releasing drugs, also activate
K-CI COT in VSMCs. These findings suggested reg-
ulation of K-Cl COT by the NO/cGMP/PKG path-
way in VSMCs (see Fig. 7) and a role for K-Cl COT
in vasodilation.

The role of PKG on K-Cl COT regulation was
further investigated in PK G-transfected (PKG +) and
PKG-deficient (PKG-) SMCs (Fig. 8), in the presence
and absence of 0.5 mm NEM, and as a function of the
NEM concentration (0—-0.5 mM). Results showed that
cells containing PK G have higher baseline K-Cl COT,
a different profile for NEM activation and display a
different inhibition profile for the NEM-activated
component by furosemide and DIOA when compared
to PKG cells, indicating a role for PKG on KCI COT
regulation in VSMCs [7].

The activity of PKG decreases after repetitive
passages of rat aortic SMCs and concomitantly, the
cells loose a contractile-like phenotype to become
“synthetic”, [32, 233]. We have found that the NEM-
and HYZ-induced activation of K-Cl1 COT in VSMCs
also decreased after several passages of rat aortic
SMCs, whereas the basal K-Cl COT was independent
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Fig. 8. Effect of VSMC age (passage number) on the activation of
RbCI influx by hydralazine (HYZ). VSMCs at passages 11 to 19
were cultured for 4 days. Cl-dependent (sulfamate substitution) Rb
influx was measured as described elsewhere [7], in the presence and
absence of HYZ. Striped bars: control (CONT), black bars: 1.75
mv HYZ (HYZ).

of the passage number. These results are shown in
Figs. 8 and 9. Figure 8 shows the RbCl influx as a
function of passage number and after 4 days in culture
(day #) both for control (striped bars) and for HYZ
(1.75 mm)-treated cells (black bars). Similar results
were found for NEM-activated RbCl influx in Fig. 9.
In this figure the negative values of RbCl influx
indicate that the flux in Cl-free medium (sulfamate
replacement) was larger than in Cl. The conclusion of
these experiments is that the HYZ- and NEM-stim-
ulated RBCl influx (K-CI COT) appears to be differ-
ent from the basal activity of the system. Because
HYZ and NEM are not NO donors and, based on the
studies on K-ClI regulation by the NO/cGMP/PKG
pathway [6-8], the results of Figs. 8 and 9 seem to
indicate that cellular aging may also affect a common
regulator of the system, likely protein kinases or
phosphatases or both. In light of the findings with
PKG, this point clearly needs further investigation.
Besides the regulation of K-Cl1 COT by Li through
the phosphatidyl inositol and the NO/cGMP/PKG
pathways in LK SRBCs and VSMCs [6-8, 89, 90, 92,
93, 114, 373], a more recently uncovered regulatory
mechanism for K-ClI COT involves serum factors.
Serum and its growth factors control the activity of
several ion channels and transporters. In VSMCs,
serum-starvation (24 h) prior to flux measurement
abolished basal K-Cl COT. No effect of serum-star-
vation was observed in cells treated with 0.05 mm
NEM. In contrast, hypotonically swollen VSMCs
exhibited K-Cl COT in serum-starved but not in ser-
um-fed cells [372], suggesting that serum or serum
factors are necessary for functional expression of K-Cl
COT in VSMCs. Platelet-derived growth factor
(PDGF), a potent serum mitogen for VSMCs, plays
an important role in membrane transport regulation
and in arteriosclerosis. In primary cultures of VSMCs,
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Fig. 9. Effect of VSMC age (passage number) on the activation of
RDbCI influx by NEM. VSMCs at passages 11 to 19 were cultured
for 4 days. Cl-dependent (sulfamate substitution) Rb influx was
measured as described elsewhere [7], in the presence and absence of
NEM. Striped bars: control (CONT), black bars: 0.5 mm NEM.

addition of PDGF increases total protein content and
K-ClI COT activity in a time-and dose-dependent
manner. PDGF activates K-Cl COT both acutely (10
min) and chronically (12 h). AG1296, a selective
inhibitor of the PDGEF receptor tyrosine kinase,
abolishes these effects [373]. The PDGF-dependent
signaling pathways involved in K-ClI COT regulation
in VSMCs is presently under investigation [373].

MobEL oF K-Cl COTRANSPORT REGULATION BY
SIGNAL TRANSDUCTION

Our latest interpretation of K-CI COT regulation by
signal transduction pathways in RBCs and VSMCs is
depicted in the model of Fig. 10. This shows the
“classical”, regulation pathway for NEM, stauro-
sporine (SP) and hydroxylamine (NH,OH) and the
newly discovered pathways for vasodilators (VDs
(NO), Li and PDGF [1, 3, 6-8, 89, 91-93, 372, 374]. It
remains to be demonstrated whether these pathways
also regulate the transporter at the protein level. This
subject is presently under investigation. Likewise,
inhibition of K-ClI COT by Li was reported in LK
SRBCs and involves the phosphatidyl inositol path-
way and likely PKC [114]. However, the role of Li in
VSMCs remains to be determined. In addition, the
signal transduction pathway involving PDGF [373,
374] is presently under investigation and appears to
involve the PI3K signaling cascade [374].

K-CI COTRANSPORT AND VASODILATION
The findings of an effect of commonly used vasodi-

lators on K-CI COT in LK SRBCs and VSMCs
through the NO/cGMP/PKG pathway [6, 7, 89, 92,
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Proposed Signal-Transduction Pathways
for K-C1 COT Regulation in VSMCs
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Fig. 10. Proposed signal transduction pathways for K-Cl COT
regulation in VSMCs. This scheme summarizes, in addition to the
most commonly proposed mechanisms for K-Cl COT regulation,
the most recently reported signal transduction pathways uncovered
in LK SRBCs and in VSMCs. The NO/cGMP/PKG pathway was
described in the legend to Fig. 7. The Li-regulated pathway in-
volves inhibition of the phosphatidyl inositol phosphate cycle (PIP
Cy.), increase in diacylglycerol (DAG) and inositol tri-phosphate
(IP3), activation of PKC and inhibiton of K-Cl COT by an un-
known mechanism. The platelet-derived growth factor (PDGF)-
regulated pathway activates K-Cl COT as reported elsewhere [373,
374]. VK: volume-sensitive kinase.

93] led to propose a putative role of K-Cl COT in
cardiovascular disease. To further test this hypothe-
sis, we recently investigated the effect of KCC3 pro-
tein deletion by gene disruption [155] on blood
pressure and heart rate [2]. Basal blood pressure was
measured in KCC3 —/- and control +/+ mice with
the Data Sciences telemetry system. The results
showed that mice lacking the KCC3 protein exhibit a
marked hypertension [2]. Some of the KCC3 —/—
mice had systolic blood pressures in excess of 185
mmHg. There were no differences in heart rate
between the groups. Measurement of water intake
showed that consumption was similar between the
groups (4.9 £ 0.4 vs. 6 = 0.6 ml/24 h, control vs.
KCC3-/-) [2]. These results provide direct physio-
logical evidence for a role of K-CI COT in vasodila-
tion.

Regulation at the Gene Level and Molecular Biology of
Human KCC Genes

All data concerning the molecular structure, genomic
organization for in silico analysis to predict general
molecular properties of all human KCC products
were obtained from publicly available databases and
web-based software located at: genomic.sanger.ac.uk,
www.cbs.d u.dk, scansite.mit.edu, www.ensembl.org,

www.ncbi.nlm.nih.gov, genome.ucsc.edu, www.fruit-
fly.org, argon.cshl.org, and pkr.sdsc.edu).

GENERAL ASPECTS

The human potassium chloride cotransporter
(hKCC) genes belong to the inorganic cation chloride
cotransporter (CCC) gene super family [145, 309].
Under certain experimental conditions, the KCC
gene products can be pharmacologically distin-
guished from the rest of the CCC members as oua-
bain- and bumetanide-insensitive, furosemide-
sensitive, Cl-dependent K transport. However, so far,
there are no known specific inhibitors for the trans-
porter. Four different human genes codifying for
hKCCs have been identified: hKCCI1-4, all of them
mediating electroneutral transport [151, 153, 251,
293,309, 340] as well as NH4 " [22, 235]. All members
of the hKCC gene family share a similar membrane
topology: two hydrophilic N- and C-terminal intra-
cellular domains connected by a central core of
twelve hydrophobic transmembrane domains. A
large extracellular loop connects the fifth and the
sixth transmembrane domain and conserves three
identical sites for N-linked glycosylation in all hKCC
isoforms [251].

According to DNA sequence alignment and
analysis, hKCCs are 70 %, 65 %, and 66 % identical
to rKCC2, hKCCl1, and hKCCC4, respectively. The
hKCC4 is 74 %, and 66 % identical to hKCC1, and
hKCC3, respectively. Hence four main hKCC vari-
ants form two groups, hKCC1/hKCC4 and hKCC2/
hKCC3. Several sub-isoforms of the hKCCI1 and
hKCC3 isoforms were described: three full-length
hKCCI1 cDNAs encoding for C-terminally different
KCCls (hKCCla, hKCC1ib, and hKCClc), and three
hKCC3 cDNAs encoding for N-terminal variants of
KCC3. In silico analysis identifying several potential
phosphorylation sites, both conserved and non-con-
served in all hKCC proteins, were detected by using
PhosphoBase server (Fig. 11). Despite the fact that
protein phosphorylation and dephosphorylation are
proposed to play important roles in the regulation of
red cell K-Cl cotransport [214], direct in vivo phos-
phorylation of KCC proteins has not been demon-
strated yet.

The four main hKCC proteins are 65-71 %
homologous with highly conserved transmembrane
domains (Fig. 11). The cytoplasmic domains in the
four types of hKCC proteins are significantly differ-
ent in the distribution/presence of putative phos-
phorylation consensus sequences. Notably, the
hKCC2 C-terminal tyrosine (Y'®’) is conserved in
mKCC3 and hKCC3 (Y'%*) [251]. However, only
hKCCI1 protein sequences reveal predicted consensus
phosphorylation sites at S°!, and Y'%, as well as one
gl)zfgé)sylation site at D**°, and one myristoylation, at
G
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TWDPSHAPDNFREL VHI KP. 1001 KCCle

KGPSPVSSEGI KDF{SMKPEVENL NOSNV! WVRL NEVI VKKSROAKL VL L NMPGPPRNRNGDENYMEFL EVL T EHL DRVML VRGGGREV| T1 ¥S 118 KCC2

RGOKAKSMEGFODL L NMRPD- - - - - QSNV! WKL NEVI VNKSHEAKL VL L NMPGPPRNPEGDENYMEFL EVL T EGLERVLL VRGGBSEVI T1 YS 1150 KCC3a

RGOKAKSMEGFODL L NMRPD- - - - - OSNV! WKL NEVI VNKSHEAKL VL L NMPGPPRNPEGDENYMEFL EVLT EGLERVLL VRGGGSEVI T YS 1009 KCC3b

RGOKAKSMEGFODLL NMRPD- - - - - OSNV! WKL NEVI VNKSHEAKL VL L NMP GPPRNPEGDENYMEFLEVLT EGLERVLL VRGGBSEVI T1 YS 1om KCCic

RSROT S| SGFKDL{EMKPD- - - - - OSNV! VKL NGVVL NKSQDACL VL L NMPGPPKNROGDENYMEFL EVL T EGL NRVLL VRGGGREVI T1 YS 108 KCC4

*

Fig. 11. Protein sequence alignment of hKCCs and predicted nase A, C, and G consensus phosphorylation sites are indicated in

phosphorylation sites. The protein sequences of human KCC blue, green, and black vertical squares, respectively. Calmodulin-

proteins (KCCla, KCClb, KCClc, KCC2, KCC3a, KCC3b, dependent protein kinase II and casein kinase II consensus phos-

KCC3c, and KCC4) translated from the corresponding cDNAs phorylation sites are shown in red and yellow vertical squares,

were aligned and shown using the single-letter code. Putative respectively. p70S6K and p34cdc2 consensus phosphorylation sites

transmembrane domain sequences are included in dashed black are indicated by an asterisk and a horizontal black square,

squares. PhosphoBase database was used to search for consensus respectively.

phosphorylation sites. Red letters represent insertions. Protein ki-
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stop codons
hKCC1a =125 24 |
hKCC1b - | 2{1—( e Ee——
hKCClc (D r—' < | 24 J
KCC1 LCAT
2223 24
SLC12A4 —=—
exon 24

Fig. 12. Genomic organization of the hKCCI gene. Diagram
showing the genomic organization of the human KCCI1 gene
SLCI12A4 located immediately at the 5 LCAT gene, partially
represented in black. Upper panel: Main differences between the
alternatively spliced KCCla, KCClb, and KCClc isoforms. The

The conserved cytoplasmic segments of all KCC
isoforms were suggested to be involved in protein-
protein interactions [251, 298], however, no recog-
nizable protein signaling domains are present [323]

GENOMIC ORGANIZATION AND EXPRESSION
KCCl1

Mammalian KCCl is a strongly conserved gene since
more than 96 % homology exists between human,
rabbit, rat, sheep and mouse KCCI1 proteins. The
hKCC1 gene (locus SLC12A4), covering 28.8 kb, is
located in the long arm (q22.1) of the chromosome 16
on the direct strand, and its 3’-end overlaps with the
promoter region of the lecithin-cholesterol acyl-
transferase gene [117, 131]. The hKCCI gene prod-
ucts are considered to be a housekeeping transport
mechanism implicated in cell volume regulation, since
it is widely expressed in mammalian tissues [131, 153,
214, 340]. Detailed in silico analysis of the hKCCl1
gene reveals that 24 exons code for several hKCCl1
mRNAs. At least 6 open reading frames encoding for
almost identical hKCC1 proteins were found in hu-
man cDNA clones [131, 200, 295]. Moreover, the
finding of 3’-end differences in hKCC1 cDNAs sug-
gests that the hKCCl1 gene possesses the potential
to generate several 3’-unique mRNA isoforms
(hKCCla, hKCCl1b, and hKCClc). Different 3’-end
open reading frames of hKCC1 ¢cDNAs encode for 3
proteins differing at their C-terminals: 1086 amino
acids in hKCCla, 1068 amino acids in hKCCl1b, and

GACGAGAACTtgtatcectttgtggagaggeaggeagtigggagatggatag

3'-end exon 23 intron 23

coding sequences are shown in gray boxes, and the respective
relative position of stop codons are also indicated. Lower panel:
Detailed sequences involved in the alternative splicing found in
KCCl1 isoforms.

1012 amino acids in hKCClc (Fig. 12). The presence
of different C-terminal regions in KCC1 proteins
raises the possibility of differential posttranscrip-
tional regulation. However, and with the exception of
two absent residues in hKCClc (T'%*!, and S$'°%°), all
hKCC1 isoforms (a, b and c) share the potential
phosphorylation sites for CaM-II, CK-II, p70S6k,
PKA, and PKC, as shown by in silico analysis using
prediction algorithms based on substrate consensus
sequences for the most popular protein kinases [366]
(Fig. 11). No consensus sites were found for MLCK,
p34cdc2, and PKG. Thus, direct phosphorylation of
KCC1 in vivo remains to be demonstrated.

The relationship between the N- and C-terminal
domains of mKCCI1 and its K-CI cotransport activity
was recently determined. Both, the C-terminal and
the membrane-proximate region of the N-terminal
domain are necessary for transport function. A
dominant negative inhibitor of wild-type KCCI
transport function was recently engineered by dele-
tion of the entire N-terminal domain [60]. The dom-
inant negative phenotype was caused by direct
association of the mutant KCC1 with the wild-type
KCCI1, an interaction that requires the presence of
the C-terminal domain [60]. Moreover, a truncation
of the last C-terminal amino acids was enough to
block mKCCI function, as well as the dominant
negative phenotype. Truncation of the last N-termi-
nally located 46 amino acids only diminished KCCl1
function [60]. In addition, the removal from rabbit
KCC1 of most of the C-terminal domain abolished
activation by NEM in HEK-293-transfected cells
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Fig. 13. Genomic organization of the hKCC2 gene. Shown is a
representative diagram of the genomic organization of the human
KCC2 gene (SLC12A5). Dark gray boxes represent each one of 26
exons of the gene, and its respective length in bp is also shown.

while apparently decreasing but not abolishing sur-
face expression [221]. Shen et al., by using KCCI
dominant-negative mutants, demonstrated that K-Cl
cotransport is an important modulator of growth and
invasiveness of human cervical cancer [327].

Analysis and comparison of the 3’-end region
of hKCC1 ¢cDNAs reveal interesting features. The
C-terminal region of the largest hKCCla [131, 200] is
encoded by the last 3 exons, whereas the two shortest
hKCClc and hKCClc cDNAs appear to be the result
of alternative intronic splicing of one of the 2 introns
between the last 3 exons [295]. Indeed, exons 22, 23,
and 24 plus an intronic sequence of 155 bp (intron 23)
are included in the 3’-end sequence of hKCClb
cDNA. Furthermore, the first 39 bp from intron 23
code for the last 13 amino acids located in hKCClb.
On the other hand, the last 3 exons present in
hKCClc cDNA are interrupted by a short intronic
sequence (intron 22), making exons 23 and 24 the
3’-untranslated region of hKCClc (Fig. 12). The
physiological significance, as well as tissue distribu-
tion and relative contribution of the hKCCl1 isoforms
to the total KCCI pool remain to be determined.

The role of the promoter region in the tran-
scriptional regulation of hKCC1 gene expression, the
transcriptional initiation site/s, and/or the intronic
characteristics has not been determined yet. However,
the mouse KCC1 promoter sequence analysis reveals
several features consistent with a housekeeping gene.
For instance, several ubiquitous transcription factor-
binding sites are located 5" the first exon, but the
classic TATA box and CCAAT motif are absent.
Interestingly, a long perfect direct repeat with multi-
ple CACCC motifs and a high GC content near the
first codon probably indicates a role in transcrip-
tional or translational regulation [340]. In addition,
several single sequences repeat intronic polymor-
phisms and Alu-like sequences were also detected in
mouse KCCI intronic sequences [330].

Northern blot analysis of human tissues using a
restriction fragment containing the 3’-untranslated
region of KCCI1 as a probe revealed that two KCC1
transcripts (3.8 kb and 4.4-5.6 kb) are ubiquitously
expressed [131, 200]. However, the 3’-end versions of

Intronic sequences are represented as gray lines connecting each
exon. Note detailed intronic region showing the relative positions
of the putative sequence recognized by NRSF and the highly var-
iable dinucleotide polymorphisms.

hKCC1 mRNAs were only detected in circulating
reticulocytes [295]. Although hKCCI1 is expressed in
every cell tested so far, little is known about the ge-
netic regulation of KCC1 mRNAs. RNA-polymerase
II-independent, protein kinase G (PKG)-dependent
upregulation of rat KCC1 gene expression was re-
cently described in primary cultures of rat VSMCs
[89]. The precise mechanisms involved in the PKG-
dependent post-transcriptional regulation of KCCI
mRNA are unknown. Furthermore, the relevance of
NO per se in the upregulation of KCC1 mRNA was
recently demonstrated [92]. Interestingly, only rapid
NO releasers were able to increase KCC1 mRNA to a
similar extent, suggesting that the rate of NO release
plays an important role in KCC1 mRNA upregula-
tion [92].

KCC2

Human KCC2 is encoded by 26 exons located in the
SLC12AS5 gene on 32 kb of the direct DNA strand in
chromosome 20, cytogenetic marker ql13.12 [316,
333]. According to the sequence published in Gene-
Bank® (NT_011362.7), the hKCC2 gene possesses
the potential to generate at least 8 different mRNAs
predicted to encode for 8 different proteins. How-
ever, only two full-length human cDNAs encoding
for identical hKCC2 proteins were cloned so far
(AF208159 and NM_020708). The intron-exon
boundaries and the size of each intron present in the
hKCC2 gene were corroborated recently [333]. The
first intron in the hKCC2 gene extends for almost
5 kb and contains a complex and variable dinucleo-
tide repeat polymorphism and a potential binding
site for a silencing factor restrictive to neurons
(NRSF) [184, 333] (Fig. 13). This 21-bp sequence
shares 80% homology to the consensus site for neu-
ronal-restrictive silencing factor binding [322] and
confers transcriptional silencing in non-neuronal cells
[184].

The translated hKCC2 cDNA sequence produces
a protein of 1116 amino acids, with a predicted
molecular weight of 123.5 kDa. Protein sequence
analysis revealed that hKCC2 possesses several po-
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tential phosphorylation sites for CaMK-II, PKA, and
PKC (see Fig. 11). In silico analysis predicts that the
unique C-5 terminal insertion in hKCC2 is encoded
by exons 22 and 23, and was suggested to play a role
in maintaining the functional conformation of KCC
cotransporters and/or to be involved in essential
regulatory protein-protein interactions [339].

Northern blot and RT-PCR analysis showed that
KCC2 transcript expression appears to be restricted
to neurons throughout the central nervous system,
retina, CA1-CA4 pyramidal neurons of the hippo-
campus, granular cells and Purkinje neurons of the
cerebellum [152, 293, 354]. However, KCC2 protein
was detected in dorsal root ganglion neurons and
KCC2 mRNA was demonstrated to be present at
very low levels in VSMCs, suggesting that KCC2
expression may not be strictly confined to the central
nervous system neurons [93, 238]. Murine KCC2 is
also expressed in the ventral horns of the spinal cord
at embryonic day 12.5 and throughout the spinal
cord at birth [156]. The KCC2 protein appears to be
localized at inhibitory synapses of the spinal cord
[236]. KCC2 is also expressed in inter-neurons in all
areas of the rat hippocampus [138], and in some areas
of the hypothalamus [224]. KCC2 mRNA was de-
tected in most neurons, Purkinje cells, granule cells,
and Stella/basket cells of the rat cerebellum [246].
Expression of KCC2 in non-neuronal tissues is
undetectable or extremely low [41] [93, 152].

KCC2 appears to play a crucial role in promot-
ing synaptic inhibition, in controlling central nervous
system excitability, and in inhibition of postsynaptic
potential [156, 302, 304, 347, 365]. The KCC2
knockout mice have severe motor deficits, exhibit
frequent generalized seizures, and die immediately
after birth [156, 365]. Animals with heterozygote
KCC2 deletion are more prone to epileptic seizures
and possess increased resistance to anticonvulsant
drugs [365]. Moreover, using quantitative PCR,
KCC2 mRNA levels were correlated with increased
seizure incidence [302]. Brain-derived neurotrophic
factor or neurotrophin-4 induces down-regulation of
KCC2 mRNA with the consequent impairment in
neuronal Cl extrusion capacity, suggesting a role for
KCC2 in the induction and establishment of epileptic
activity [303]. Interestingly, unknown mechanisms
modulate KCC2 expression after nerve injury in the
spinal cord. Indeed, local blockade or knock-down of
the spinal KCC2 in intact rats markedly increase
sensitivity to pain [69]. Recent reports suggest that
hKCC2 has the potential to mediate NH4 " uptake in
cultured rat brain neurons [235] and possibly con-
tributes to anoxic/ischemic white matter injury [241].
Tyrosine kinase pathways stimulated by insulin and
IGF-1 rapidly activate KCC2 in cultured neurons at
either the membrane level or by trafficking new
KCC2 molecules to the membrane from vesicular
pools [188].

KCC3

A close look at the Human Genome Database com-
bined with in silico analysis reveals that the human
KCC3 gene is located on the reverse strand of locus
SLC12A6 in chromosome 15 (cytogenetic marker
15q13) extending from base 28730345 to base
28702321 and with the potential to generate at least
3 different isoforms, KCC3a, KCC3b, and KCC3c.
The predicted hKCC3a and KCC3b proteins contain
12 membrane-spanning segments and 5 potential
N-glycosylation sites. Both KCC3s share around 77%
amino-acid identity with hKCC1 and 73% identity
with hKCC2. Several KCC3 mRNA transcripts
(9, 7.5, and 4.5 kb) were detected by Northern blot
analysis in brain, heart, skeletal muscle, and kidney.
However, Western blot analysis only showed
expression of 150 kD KCC3 protein that was reduced
to 120 kD after glycosidase treatment [151]. Mount et
al. identified a full-length hKCC c¢cDNA, which they
initially termed KCC4 but later renamed KCC3 [251].
This ¢cDNA encodes an 1150 amino acid protein.
Northern blot analysis detected 2 KCC3 transcripts
of 6-7 kb, consistent with alternative splicing, in
muscle, brain, lung, heart, and kidney. The longer
KCC3 isoform was designated as KCC3a [251] and
the shorter isoform KCC3b [151].

At least four different hKCC3 cDNAs were de-
scribed (AF477977, AF105366, AF116242, and
AF108131) altogether differing at their 5-UTR.
Three human cDNAs differing at their 5-UTR en-
code for the KCC3a isoform (AF116242, and
AF105366), whereas KCC3Db is encoded by a single
cDNA (Fig. 14). The molecular mechanism, as well
as the genomic DNA sequences, involved in the
transcription of different 5-UTR KCC3a mRNAs
are presently unknown. In all KCC3a mRNAs, a
single exon (exon la) encodes for the first 92 amino
acids. Exon 1la is located 23 kb upstream from exon
1b. Then, all KCC3a transcripts appear to be the
result of selection of an alternative promoter 5" exon
la as well as an alternative splicing, since exon 1b and
part of exon 2 (the first 21 bp) are not present in all
KCC3a mRNA isoforms.

The hKCC3 gene seems to produce the KCC3b
mRNA isoform by direct transcription of 22 con-
firmed exons that follow the consensual gt-ag splicing
rule. However, the DNA sequence of the promoter
region upstream of exon Ib is still incomplete. Two
identical cloned cDNAs encode for the KCC3b iso-
form (NM_005135 and AF105366) [151, 251]. The
first 32 residues in the KCC3b protein are encoded by
a single exon (exon 1b) separated from exon 2 by
almost 2 kb of intronic sequence. The second exon in
the hKCC3 gene encodes for the next 44 residues.
The first 7 amino acids encoded in exon 2 are only
present in KCC3b, whereas the rest of the C-terminal
encoded amino acids are common to all KCC3 iso-
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Fig. 14. Genomic organization of hKCC3 gene. Representative diagram of the genomic organization of human KCC3 gene (SLC12A6), in
which all the coding exons are indicated as grey boxes connected by their respective introns.
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Fig. 15. Alternative initiation codons in the hKCC3 gene. Repre-
sentative not-to-scale diagram of the 5 end of hKCC3 gene
showing three alternative start codons located at exon la, exon 1b,
and exon 3, respectively. Exon 1b encodes for the unique first 33
amino acids of KCC3b, whereas exon 2 encodes for the last 8

forms. KCC3b mRNA encodes a protein of 1099
amino acids, with a predicted molecular weight of 122
kD, and different content and distribution of poten-
tial phosphorylation sites.

A more complex picture arises by the report of a
new cDNA (AF477977) with 774 bp of 5-UTR,
which here we call KCC3c, the shortest KCC3 ver-
sion (1012 amino acids) with a predicted molecular
weight of 112 kD. In silico analysis of KCC3c mRNA
predicts translation from an alternative in-frame ini-
tiation codon (ATGQG) located in exon 3, probably
because exon 1b and 2 were spliced out at the pre-
mRNA level (Fig. 15). A similar, but not identical
full-length cDNA clone with the potential to encode
for at least two truncated versions of hKCC3 was
also described (BC033894). Although its significance
and tissue distribution is unknown, a different version
of KCC3 with an approximate apparent molecular
weight of 105-110 kD was detected in the mouse
kidney [294]. The difference between this short KCC3

unique amino acids of KCC3b. Exon 2 also shows the relative
position of the predicted splicing acceptor site for exon 1b (24 bp 3’
exon 2). The N-terminal regions of all KCC3 proteins are aligned,
showing the relative initiation position.

version and KCC3a expressed in mouse brain re-
mained after deglycosylation, indicating that the
difference is not related to differential glycosylation
[294].

KCC3 transcripts were detected in human kid-
ney, heart, and brain [151, 251]. Although little is
known about the functional properties of the KCC3
gene product, a recent report suggests that KCC3
may play an important role in the regulation of cell
growth [326-328, 373]. KCC3 was suggested to play a
role in the physiology of myelinization since the
ontogeny of KCC3 expression correlates with myeli-
nization in the rodent central nervous system [294].
Furthermore, KCC3 is mutant in a severe peripheral
neuropathy associated with agenesis of the corpus
callosum [155]. Mutations in all 25 exons in the
KCC3 gene were screened in an attempt to correlate
hKCC3 anomalies with rolandic epilepsy or common
subtypes of idiopathic generalized epilepsy. However,
no significant correlations were found [338].
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Fig. 16. Genomic organization of the hKCC4 gene. Representative diagram of the genomic organization of the KCC4 gene. The gene is
defined by 24 exons (light gray boxes), which have the potential to generate 2 variants: KCC4a and KCC4b (indicated as continuous light

gray boxes).

The pattern of KCC3a and KCC3b expression in
some mouse tissues and in rat VSMCs was recently
analyzed by Northern blot and RT-PCR, respectively
[89, 294]. Although the precise mechanisms involved
in the production of several KCC3a mRNAs and the
KCC3b mRNA are unknown, the presence of several
5’-UTR unique KCC3 mRNAs, and their N-terminal
KCCSs raise the possibilities of differential tran-
scriptional, post-transcriptional, and/or post-trans-
lational regulation. Supporting the hypothesis of
post-transcriptional regulation is the fact that both
KCC3a and KCC3b mRNAs are differentially up-
regulated by the NO signaling pathway indepen-
dently of de novo transcription [8, 90, 92, 93]. The
relevance of NO per se and fast NO releasers in the
upregulation of KCC3 mRNA in rat VSMCs was
recently determined [92]. In line with these findings,
KCC3 knockout mice are severely hypertensive [2].
This effect remains to be investigated in the human
KCC3 mutation.

KCC4

The fourth version of human genes for KCCs,
hKCC4, is encoded by 24 exons located in locus
SLCI12A7 in a genomic region spanning 60 kb on
human chromosome 5 (5p15.3, sequence NT_006576).
At least three full-length human cDNAs were char-
acterized so far, two long versions (XM _049508, and
NM _006598) encoding for an identical KCC4a pro-
tein of 1083 amino acids [251], and a short version
obtained from brain neuroblastoma cells (BC007760)
encoding for KCC4b, an alternatively spliced isoform,
which encodes for a protein of 266 amino acids (MW
28 kD) (Fig. 16). Although probably a non-active
isoform, in silico analysis suggests that KCC4b is the
result of either a homozygous gene deletion or an
alternative splicing, since 2063 bp corresponding to
the last 240 bp of exon 7, together with exons 8 to 22,
and the first 122 bp of the last exon, are absent
(Fig. 16). KCC4a and KCC4b proteins share an
identical cytoplasmic N-terminal domain and the first

3 transmembrane domains. The extracellular C-ter-
minal domain present in KCC4b is encoded by the
first 2 bp of exon 7 and 126 nucleotides located in the
last 1947 bp of exon 23 (Fig. 16). The physiological
significance, of KCC4b is unknown.

The hKCC4a protein is 90 % and 71 % homol-
ogous to the mouse and rat counterparts, respec-
tively, hKCC4a mRNA is a 5.3 kb transcript that is
expressed in bone marrow, spleen, thymus, brain,
spinal cord, skeletal muscle, prostate, pancreas, and
basolateral membranes of several nephron segments,
lung, heart, and liver. It was postulated that KCC4
mediates potassium and chloride exit from the cell
and may play an important role in salt absorption by
the distal convoluted tubule [350]. A recent report
describes in detail the distribution of KCC4a protein
in the central nervous system and shows that it is
highly expressed in cranial nerves, spinal cord and
peripheral nerves [183]. Molecular disruption of
mouse KCC4 gene expression is associated with
deafness and renal tubular acidosis. Although viable
and fertile, the KCC4 knockout mice weigh about
90% of their littermates and their hearing ability
quickly deteriorates becoming almost totally deaf
after the second week of life [33]. The KCC4 gene
appears to be implicated neither in the normal
development of the inner ear nor in endolymph
production, since no obvious histological changes
and no collapse of the Reissner membrane were
found. However, at the cochlear level, the outer hair
cells of basal turns were absent and the organ of Corti
was lost completely in basal turns [33].
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